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Large-amplitude motion of a compressible 
fluid in the atmosphere 

By ALFONS J .  CLAUS 
Bell Telephone Laboratories, Whippany, New Jersey 

(Received 20 June 1962 and in revised form 6 June 1963) 

Large-amplitude atmospheric flows past mountain ridges are investigated. The 
flows are assumed to be steady and two-dimensional. Diffusive and viscous 
effects are neglected but static compressibility is taken into account. 

The larger part of the investigation is devoted to the study of waves in the lee 
of mountain ridges. The major contribution consists in the treatment of the large- 
amplitude motion. The flows are governed by an equation which turns out to be 
linear for certain upstream conditions. These conditions impose some restrictions 
on the wind profile and stratification of the entropy and specific energy far up- 
stream. However, flow patterns representing realistic upstream conditions have 
been obtained. 

A comparison between a compressible flow and an incompressible flow with 
equivalent upstream conditions is included. 

1. Introduction 
This is an investigation of large-amplitude atmospheric flows past mountain 

ridges. The flows are assumed to be steady and two-dimensional. Since diffusive 
andviscous effects are of minor importanceinlarge-scale atmospheric phenomena, 
they are neglected. The compressibilit,y of the air is taken into account. However, 
effects of dynamic compressibility will be ignored because the Mach number can 
be assumed everywhere small. This is equivalent to assuming that any change in 
density of a fluid element is entirely due to a change in its elevation. 

The larger part of this investigation is devoted to the study of waves in the 
lee of mountain ridges. The presence of these waves is in essence a result of the 
non-homentropy and non-homenergy of the atmosphere. However, the analysis 
of non-homentropic flows is greatly complicated by the lack of a unique relation- 
ship between pressure and density, valid throughout the whole field of flow. 
Several authors (Lyra, Queney, Scorer, Crapper) have studied the subject by 
perturbation methods, and their results are valid only when the disturbances are 
small compared with the corresponding quantities in the undisturbed flow. 
The major contribution of the present investigation consists in the treatment of 
the large amplitude motion. In  the study to be presented here, the flows are 
governed by an equation whose form depends on the conditions far upstream 
of the mountain ridge. Some of these conditions make the latter equation linear 
provided stratifications of entropy and specific energy are slight, and the Mach 
number is indeed everywhere small as assumed. These particular upstream con- 
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ditions thus give rise to large-amplitude flows which are still governed by a linear 
equation. 

The linearity of the equation imposes some restrictions on wind profile and 
stratification of the relevant physical quantities far upstream of the ridge. How- 
ever, the method has proved to be quite flexible and several flow patterns have 
been obtained corresponding to various upstream conditions which are realistic. 

In  order to investigate the effect of compressibility, two flow patterns with 
equivalent upstream conditions, one for a compressible fluid and the other for 
an incompressible fluid, were obtained and compared with each other. A discus- 
sion of equivalent upstream conditions is included. 

2. The governing differential system 

fluid are 
The equations of motion for steady two-dimensional flows of an inviscid 

and 

where (u,, u3), arethevelocitycomponents in the (x,, x3) directions, p* the density 
and p ,  the pressure. The equation of continuity is 

If diffusive effects are neglected the quantity p*/p$ is constant along a pathline 
and so, for steady flows, constant along a streamline. However, for the flow 
of a non-homentropic fluid considered here, the value of p+/p$ changes from 
streamline to streamline. Therefore pa is not a function of p* alone throughout 
the whole field of flow, and the expression dp*/p+ is not a total differential. This 
major difficulty can be avoided by introducing an associated flowfield which is 
related to the old one by means of a transformation due to Yih (1960a) 

u; = u,&, = U3&, p;: = p*/h, p i  = p*,  

with A = & ( % )  UY . 
Po P* 

When these changes of dependent variables are used, equations (1 a)  and ( 1  6) 
become 

and 

in which pk now depends solely on p;. Indeed 
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The equation of continuity becomes 

Equation (5) guarantees the existence of a stream function $;(xl, x,) in terms 
of which hhe velocity components can be expressed as 

This stream function can be shown to satisfy the equation 

where 

With the neglect of dynamic compressibility and the assumption of small varia- 
tions of H i  and A, equation (7 )  can be written as? 

in which 

The functions A($&) and H i ( @ & )  are to be considered as known and are con- 
veniently determined far upstream. 

Equation (9) will be used for the study of two-dimensional, atmospheric flows 
past mountain ridges. Except for the obstacle (mountain profile), the ground will 
be considered perfectly level which implies that the stream function @;(xl, x3) 
on the level portion of the ground is equal to a constant and can be taken equal 
to zero. 

The fact that there is no rigid upper boundary for the atmosphere causes 
some difficulty. However, because of the very stable stratification in the constant 
temperature stratosphere, vertical motion in that layer is somewhat inhibited. 
If we assume no vertical displacement in the stratosphere, the interface between 
the troposphere and stratosphere may be considered to be a rigid plane. The flows 
studied under this assumption are therefore restricted to the troposphere. If 
d is the height of this interface (the tropopause), this assumption is mathe- 
matically equivalent to @i(x,, d )  = const., which is a second boundary condition 
for $&(x,, x,). With the dimensionless variables 

x = X J d ,  z = x3/d ,  @' = $i /d(gd) t ,  H' = 11. = H;/gd, 

For the derivation of equations (7)  and (9) and a discussion of the underlying assump- 
tions we refer to Yih (1960a). A vorticity equation equivalent to (7)  was given by Long 
(1953c), who also considered the flow of two superposed homentropic layers over a 
barrier. 
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equation (9) can be put in the form 

Obstacle 

The boundary conditions become 
Y ( x ,  0) = 0 

for values of x corresponding to the level portion of the ground, and 

$'(x, 1) = const. ( 1 l b )  

The atmosphere has thus been replaced by a mathematical model (figure 1) 
in which the essential physical features have been retained and should be quite 
adequate for the study of atmospheric flows over mountain ridges. This mathe- 
matical model consists of a channel bounded by two rigid horizontal planes 

1 .o I 

FIGURE 1. Mathematical model for the study of two-dimensional flows 
in the troposphere. 

located at z = 0 and z = 1 in a rectangular Cartesian co-ordinate system. An 
obstacle is present on the lower boundary. The flow is governed by the system 
consisting of equations (10) and (1 1). The form of equation (10) depends on the 
upstream conditions since they determine the functions dhld$' and dH'ld$', 
These conditions will be discussed in some detail in the next section. 

3. Upstream conditions leading to a linear differential equation 
In  order to have a clear physical picture of what is meant by conditions up- 

stream, a uniform flow between the two rigid planes ( z  = 0 and z = 1) with no 
obstacle present can be considered. It is obvious that the pressure, density, 
temperature and velocity profiles do not depend on the section at which they are 
taken. Suppose that, at  a certain time, an obstacle is introduced. If the resulting 
unsteady flow tends to a steady state, and furthermore if the introduction of the 
obstacle does not alter the distributions ofp, p, T and U sufficiently far upstream, 
the conditions far upstream can be considered as pre-assigned. 

First of all let it  be observed that, of the four functions, p(z ) ,  p(z), T(z ) ,  U(z ) ,  
only two can be chosen arbitrarily, namely, the velocity U(z )  and any one ofp(z), 
p(z) and T(z) ,  say p(x). Indeed, since far upstream the flow is uniform, the 
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pressurep can be obtained from p by means of the equation @jdz = - (gpod/po)p. 
The temperature T follows then from the gas law. 

If  the velocity and density are given (as functions of z )  far upstream, all the 
four quantitiesp, p, T and U are known and h can be determined from h = pp-lh. 
The specific energy H' can then be evaluated using the relation 

in which 

Furthermore, far upstream, U' = U J h  and $' are related by 

or 

We have thus H' ,  h and $' as functions of z far upstream and H' and h can be 
determined as functions of $.'. The latter functional relationships are valid 
throughout the whole field of flow, and, as pointed out earlier, they determine 
the form of the governing differential equation. 

In  the search for a solvable system we will try to obtain linear functions 
of $' for dh/d$' and dH'/d$'. Clearly, a random choice of the upstream density 
p and velocity U would, in general, not lead to a linear dependence of dH'ld$' 
and dh/d$' on $'. The adopted scheme will therefore be an inverse one. Since 
we have the choice of two arbitrary functions (for instance, U andp) of z, we shall 
so choose them as to insure the linear dependence of dH'ld$.' and dhld$' on $I. 

dh Thus, we put (Yih 1960~) .  
= A$'+B 

and 

Once the constants A,  B, C,  D are chosen, it is possible to determine the up- 
stream situation. That this is indeed so can best be shown by determining the 
upstream conditions corresponding to a certain choice of A ,  B, C, D which will 
now be done. 

Inserting the expressions (13) for dh/d$' and dH'/d$' into equation (lo),  we 
obtain 

+ /3( 1 - CCZ)~/(~-') ( AZ - C )  $' = /3( 1 - CCZ)' ' (~-~) (D - Bz) . ( 14) 

Since the flow far upstream is essentially uniform, the stream function becomes a 
function of z alone, say $;(z), and is governed by 
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which is an ordinary differential equation for $;(z). Any function $i (z )  satisfying 
(15) guarantees the linearity of (10). Once $ i ( x )  is known, A and H' as functions 
of z (far upstream) are easily determined. Indeed it follows from (13a) and (13b) 
that 

h = *A$';' + B$; + A,, (16a) 

and H' = &C$iz + D$i + HA. (16b)  

The constant A, can be chosen to make h = 1 at the reference point, i.e. the point 
where the pressure and density are p o  and p,, respectively. This point has been 
taken at  z = 0.5 in our calculations. The constant HA has to be taken in such a way 
as to make a! M l /H' .  Since one of the earlier assumptions was that the variation 
in H' is small, cx = 1/H' was treated as a constant in equation (15). By selecting 
HA as indicated, H' (slightly varying with height) will be consistent with the value 
of a! appearing in (15). 

It follows from (12) that 
H' - hz - &uf2 ~h-1) ' = [  E I .  (17) 

(18) 
U' = p-l/Y d$' 1 .  

az Furthermore 

The only unknowns appearing in equations (17) and (18) are p and U'. Since 
U'2 is usually very small with respect to the other terms in (17), the system can 
best be solved using an iterative scheme. Once U' and p are known, the velocity 
U and density p follow then from U = lYlz/h and p = hpl'y. 

The previously obtained pressure p ( z )  and density p(z) satisfy the equation of 
static equilibrium dpldz = - (qp,d/p,)p. This is indeed guaranteed by the fact 
that equation (15) is the equation of static equilibrium in terms o€ the stream 
function $i(z). 

Since equation (15) does not uniquely determine $;(z), the same set of values of 
A ,  B, C and D corresponds to different upstream conditions and therefore leaves 
this inverse procedure quite flexible. It may thus be hoped that a realistic 
upstream situation can be found, first by selecting proper values for A ,  B, C and 
D and further, once a definite choice has been made, by taking the most suitable 
solution of (15). 

Equation (15) has been solved by a series method. Various realistic upstream 
conditions have been obtained. Some of them are shown in figure 2. In  all cases 
the density stratification fits meteorological data very closely, This density 
stratification is quite independent of the values of A ,  B, C and D as long as the 
velocity is kept within reasonable limits. Furthermore, these coefficients by no 
means determine the stratification in entropy and specific energy, but merely 
establish some relationship between this stratification and the velocity. Roughly 
an increase in the velocity leads, for constant A,  B, C and D, to a greater strati- 
fication. Entropy-stratification and wind profiles actually occurring in the 
atmosphere can be approximated quite closcly as can be seen from figure 2 .  
The present analysis is therefore not without practical value. 
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(a) A = 0, 
D = -0.02; 

4. Methods of solution 
The basic problem can now be stated more accurately. Suitable values have 

been assigned to the constants A ,  B, C and D, and, out of the infinity of solutions 
of (15), an appropriate stream function $i(z) has been selected corresponding to 
realistic upstream conditions. The problem is then to find a function $'(x,z) 
satisfying equation (14), which is equal to zero on the lower boundary (consisting 

18 Fluid Mech. €9 
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of the level portion z = 0 and the obstacle) and equal to 1++;(1) on the upper 
boundary z = 1. Furthermore, $'(x, z )  should approach $i(z) for x -+--GO. Thus 
if we put 

in (14), the function $L(x,z) has to satisfy the homogeneous equation (20)7 
since $i (z )  is a solution of (15). Thus, 

$'b, 4 = &(z)  +Ptfk(X, 4 7  (19) 

Furthermore, $k(x, z )  is subject to the conditions: 

$k(x, x )  = 0 on the lower boundary, (21) 

$ax, 1) = 0, (22) 

lim $L(x,z) = 0. (23) 
X"-CC 

Prescription of the obstacle shape leads to a boundary condition for the stream 
function $'(x, z )  which is difficult to satisfy. This difficulty can be avoided as 
follows. We will use an indirect, but exact method for creating an obstacle and 
justify the procedure by the argument that the obstacle shape is of minor impor- 
t,ance. Indeed, the main objective of the present study is the behaviour of the 
atmospheric flows in the lee of mountain ridges and the general characteristics 
of these flows should not be affected by the particular shape of the mountain 
profile. Two methods have been used to introduce a barrier. One is due to Yih 
and is a completely inverse method. A second method, due to Long, is semi- 
inverse in the sense that a barrier of infinitesimal height can be pre-assigned. 
Both methods involve the solution of equation (20), subject to the conditions 
&(x, 0 )  = &(x, 1) = 0. Of course, these two conditions do not uniquely determine 
a solution of (20), if singularities are allowed, as long as they are located inside the 
barrier. Indeed, the barrier is created by these singularities. 

Equation (20) is satisfied by an expression of the form 

e*dAnzfn(z ) ,  (24) 

where A, is an eigenvalue of the Sturm-Liouville system 

a d"f + 1- ____ df - + [/I( 1 - a2)Zh-l) (Az - C) + A]f = 0, 
dz2 ( y - l ) ( l - a z ) d z  

and f n ( z )  is the corresponding eigenfunction. The eigenvalues and corresponding 
orthonormal functions have been obtained by the use of power-series expansion 
and an iterative scheme. For certain combinations of values of A and C there 
may be negative eigenvalues. The exponential term in (24) becomes then a sine 
or cosine term. All eigenfunctions are normalized according to 
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In  the first method (Yih 1960b) the function $L(x, z )  is taken as an infinite series 
of terms of the type (24) with unknown coefficients A,, B,, C, and D,. However, 
the coefficients corresponding to x < 0 are different from the ones corresponding 
to x > 0. Furthermore, since $L(x, z )  has to approach zero for x --f - CQ, no oscil- 
latory terms are allowed for x < 0, i.e. the summation for x < 0 begins with the 
first positive eigenvalue. Thus, 

m 

$&(x,z) = C AnedAnafn(z), for x < 0, 
, = N i l  

N *. 

+L+(x, z )  = C. (B,cos (-h,)~x+C,sin (-h,)&x}f,,(z) 
n= 1 

m 

n = N + l  
+ C Dne-dAnzfn(z),  for x > 0, (29) 

in which N is the number of negative eigenvalues of the Sturm-Liouville system 
consisting of (25) and (26). 

Provided the series converge, both $L.-(x, z )  and $L+(x, z )  satisfy equation 
(20) and the conditions (21) and (22). The function $L-(x,z), valid for x < 0, 
vanishes for x +-CQ and thus satisfies (23). The coefficients A,, B,, C, and D, 
will now be determined to create a barrier on the lower boundary. It should be 
noted that thefunction $;(x,z), consistingof $h-(x, z )  and $L+(x, z),  is analytic for 
x < 0 and x > 0 (0 < z < 1)) and the only singularities are located at  x = 0. 
The fact, whether there will be singularities on the segment x = 0 (0 < z < 1)  
depends, of course, on the choice of the coefficients A,, B,, C, and D,. If we were 
to select these coefficients in such a way as to make all points ( 0 , O  < z < 1) 
regular, $i(x, z )  would be analytic throughout the whole strip 0 6 z < 1 and would 
necessarily have to be equal to zero, since periodic wave motion has been ruled 
by the assumption that waves do not occur far upstream. We will therefore 
allow the function $;(x, z )  to be singular on the portion 0 < z < a of the segment 
0 6 z < 1. However, since no singularities can be tolerated in the flowfield, the 
created barrier should have a height of at  least a at x = 0. 

Different types of singularities can be used. For our calculations, a discontinu- 
ity in the x-derivative was introduced. Thus, 

$L-(O,z) = $h+(O,z) ,  for 0 < z < 1, (30) 

Equations (30) and (32) ensure the analyticity of $L(x,z) on the segment 
x = 0 (a  < z < 1 )  and therefore in the whole field of flow, and $L+(x, z )  is the ana- 
lytic continuation of $L-(x, z )  outside the barrier. The conditions (30)) (31) and 
(32) lead to m N m 

C Anfn(z) = C Bnfn(z )+ C Dnfn(z) ,  (33) 

X 2/( - An) cn fn(z) - C 2/hn (An +Dn)fn(z) = - g(z)*  (34) 

n = N + l  n = l  n=N+1 
N m 

n=l  n = N + l  

18-2 
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It follows from (33) that 

and A ,  = D, (n = N + l , N + 2 ,  ...), 
and from (34) that 

B, = 0 (n = 1,2,  ..., N )  

Indeed, the constants 1/(  -A,)C, and ,/An (A,+D,) are merely the Fourier 
coefficients in the expansion of the function g(z) in a series of eigenfunctions of the 
Sturm-Liouville system consisting of (25) and (26). The eigenfunctions corre- 
sponding to negative eigenvalues also appear in (34), so that all eigenfunctions 
must be present to make the expansion possible. 

The final expressions for $i(x, z )  are thus 

1 "  
Qn e-dAnxf,(z), for x >  0, (36) 

n=N+1 dhn 
in which 

The upper limit in the above integral has been taken equal to a since g(z) = 0 
for a < z < 1. By changing the value of p appearing in (19), the flow pattern 
can be changed. This value should be taken large enough so the barrier covers 
the segment 0 < z < a on x = 0. In  this way the stream function will be analytic 
throughout the whole field of flow. The flow pattern is given by 

$'(x, z )  = $;(z) +p$L-(x, z ) ,  for x < 0, (37)  

and $'(x, z )  = $I.;(z) +p$i+(x, z),  for x > 0. (38) 

In  the method used by Long, the field of flow is divided into three regions 
( x  < - b, - b < x < b, x > b) ,  the middle-region ( - b < x < b )  containing the 
barrier. Although it is true that a flow pattern can be found for a barrier of arbi- 
trary shape (however small), we will restrict ourselves to a barrier of the shape 

In each region, a homogeneous stream function is assumed each term of which 
&{l + cos(7rx/b)}. 

satisfies equation (20). Thus, 
m 

$il(x,z) = C AnedAnxf , ( z ) ,  for x < -b ,  
n = N f l  

N 

n= 1 
+ C {pn cos ( - A,)& x + G, sin ( - A,,)* x>f,(z) 

W 

(39) 

+ (Hne~hn2+M,e-~nnZ) fn(z )y  for -b < x < b, (40) 
n=N+1 
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m 

+ C Dne-dhnzfn(z), for x > b. (41) 
n = N f l  

As far as regions I and I11 are concerned, each term in the series also satisfies 
the boundary conditions (21), in agreement with the fact that there is no obstacle 
in these regions. The terms Fo(z) and Fl(z) cos (nxlb) appearing in (40) will cause 
the function @iI(x, z )  to be different from zero on the line z = 0. Therefore the line 
z = 0 will not be a streamline in region I1 and an obstacle is thus created. Since 
the functions Fo(z) and Fl(z) cos (7rxlb) have to satisfy equation (20), 

a dFo + /3( 1 - ~ z ) ~ / ( Y - ~ )  (Az - C) Fo = 0 -+--- 
dz2 

d2Fo 1 
(y - 1) (1 - az) dz 

Since the upper boundary ( z  = 1) has to remain a streamline, Fo(z) and Fl(z) 
must satisfy the conditions 

Fo(l) = Fl(l) = 0. (44) 

Different values for Fo(0) and Fl(0) merely correspond to different obstacle 
shapes. It can be shown that when Fo(0) and Fl(0) are both taken equal to 1, 
the convergence of the series in the expressions (39), (40), and (41) is most rapid. 

We therefore put 
Fo(0) = Fl(0) = 1. (45) 

The integration of equations (42) and (43) subject to the conditions (44) and (45) 
has been performed using power-series expansions. It was tacitly assumed that 
neither 0 nor n2/b2 is equal to an eigenvalue of the Sturm-Liouville system 
consisting of (25) and (26). It would then indeed be impossible to find solutions 
of equations (42) and (43) satisfying conditions (44) and (45). The coefficients 
A,, B,, C,, D,, F,, G,, Hn and M, are now used to establish continuity of $'(x, z )  
and a$'(x, z ) / &  at the lines x = - 6 and x = + b y  making the function @'(x, z )  
analytic throughout the whole field of flow. In  order to accomplish this, the 
functions Fo(z) and Fl(z) have to be expanded in a series of eigenfunctions f , ( z )  
Thus, 

m 

n = l  
FO(z) = C C:fn(z) ,  (46) 

and 
m 

The coefficients Cg and Ck are given by 

(47) 

and 
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The integrals appearing in (48) and (49) can be evaluated easily by observing 
that the functions F,(z) and F,(z) satisfy (42) and (43) and the boundary conditions 
(44) and (45). The coefficients C$ and CA are found to be 

and 

The requirement that $'(x,z) and a$'(x,z)/ax be cont,jnuous at z = -b  and 
x = b determines the values of the coefficients. These values are 

A ,  = D, = - R, sinh Jh, b, for n > N ,  

H, = M, = S e - d A n b ,  for n > N ,  
2 

B, = 0, for n < N ,  

(7, = - 2R, sin ( -A,)& b, for n < N ,  
F, = R, cos ( -A,)& b, for n < N ,  

G, = - R, sin ( - A , ) )  b, for n < N ,  

in which R, = CA-G';, or 

R = -c 'f,O [&{A, + (n2/b2)}]-1. 
b2 dz 

Equations (39), (40) and (41) become 

(51) 

m 

n = N + 1  
+ C R,e-dAnb cosh (Jh,x)f,(z), ( 5 2 )  

N 

n= 1 
z )  = - 2 C R, sin ,/( -An)  b sin {( - h,)gx} fn(z) 

m 

- C R,,sinh~/h,be-dAnx f,(z). (53) 
n = N + 1  

The stream function T(x ,  z )  from which the flow pattern can be obtained is then 
$'(x, z )  = $;(z)  +p$h(x, z) ,  in which $L(z, z )  is taken equal to $hI(x, z) ,  $iIl(z7 z) ,  
$LII1(x, z )  respectively, in the regions x < - b, - b < x < b, x > b. 

5.  Discussion of results 
The reference point, at  which the pressure and density are equal to p ,  and p,, 

respectively, has been chosen in the middle of the troposphere, that is at  z = 0.5. 
The following vaIues have been taken: p ,  = 410 mm Hg, andp, = 0.000723 g/cm3. 
The height of the tropopause has been taken to be 10 km. The average value of 
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the specific energy H' used in the calculations was obtained by evaluating this 
quantity a t  the reference point z = 0-5, 

With y = 1.4, the coefficients a and p then become cc = 0.3125, ,8 = 2.3471. 
With these numerical values, several upstream conditions have been obtained. 
The density, pressure and temperature profiles approximate the realistic 
profiles in the atmosphere closely. This is hardly surprising if one considers the 

H' = 3.198+4u2 N" 3.2. 

FIGURE 3. Upstream conditions leading to a flow pattern with 
no lee-wave components. 

fact that the stratifications in entropy and specific energy occurring in the 
atmosphere are rather slight and we have chosen the constants A ,  B, G and D 
in such a way as to satisfy these latter conditions. Although the velocity 
term (iU'2) was included in equation (17 )  to determine the pressure variation 
(with height), quite large velocity changes have a rather limited influence on the 
pressure profile. Various upstream conditions (including the wind profiles) 
corresponding to various wave formations in the lee are shown in figures 3,5 and 9. 
All the examples shown correspond to an entropy increasing with height (or A 
decreasing with height), as is required by static stability. The essential task is to 
find some combinations of stratifications in entropy and specific energy together 
with compatible velocity profiles that give rise to either no lee waves or lee waves 
with one or more components. By reducing the velocity far upstream and leaving 
the other quantities unaltered, it is possible to create more lee-wave components. 
Indeed, once A and C are chosen the number of lee-wave components (corre- 
sponding to the negative eigenvalues) is fixed. Decreasing the velocity, which 
is equivalent to reducing the stream function, then results in a smaller stratifica- 
tion. The extreme case (zero velocity upstream and no stratification) can be 
considered as the limit case of a flow with several wave components in the lee. 

Figure 4 shows a flow pattern with no waves in the lee. The obstacle is sym- 
metric, as expected. The solution has heen obtained by Yih's method. Mathe- 
matically, a solution is allowed for any height of the obstacle in agreement 
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with the fact that there are no lee waves present. Indeed, once a particular 
height h of the obstacle has been selected the coefficient ,u appearing in (19) 
is given by 

(54) 

If $;(a, z )  does not have any nodal lines and therefore $JO, z )  + 0 for 0 < z < I ,  
equation (54) yields a value o f p  for any height h between 0 and 1. In  the case of 

X+ 

FIGURE 4. Flow pattern with no lee waves. 

FIGURE 5. Upstream conditions leading to a flow pattern with one lee-wave 
component. A = 0, B = -3.5, C = -30.0, D = 0. 

one lee-wave component (say), the function $ i ( x ,  z )  has one nodal line and there 
exists a number z1 between 0 and 1 such that @L(O,z,) = 0. Equation (54) still 
yields a value of y provided h < zI. The obstacle height approaches zl, as 
approaches infinity. It is thus impossible to obtain a steady flow past an obstacle 
of a height greater than the height of the nodal line. 

Figure 6 represents a flow pattern where the coefficients A and C have been 
selected to give rise to one wave component in the lee. The usual jet occurring 
above the barrier and extending upstream is present. The much stronger wave 
motion in the lower part of the channel should not be considered merely (if at  all) 
as a result of compressibility. One of the reasons certainly is the shape of the 
velocity profile far upstream. It may be conjectured that a higher velocity in the 
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upper part of the channel has a ‘washing down’ effect on the waves. Indeed, 
as pointed out earlier, increasing the velocity a.t constant stratification tends to 
eliminate wave motion. The influence of the velocity profile on the development 
of the waves as a function of height may become clearer by the following con- 
sideration. If the velocity increases with height, the graph representing the 
stream function @l(z )  upstream is curved downward (see figure 7). This means 
that a moderate value (represented by the segment AB in figure 7) of the 

z + -  

FIGURE 6. Flow pattern with one lee-wave component. 

21 

Stream function 
LDeflexion of streamline 

originating at z = z, 
far upstream 

b 

FIGURE 7. Influence of wind profile on wave amplitude. 

stream function $h(x, z )  will cause a rather large deflexion of the relevant stream- 
line when one considers the lower part of the channel, while the same value of 
@i(x, x )  would only cause small deviations in the upper part of the channel. This 
would indicate that such a velocity profile (velocity increasing with height) 
favours the wave development near the ground. The opposite conclusions are 
reached if velocity profiles are considered where the velocity decreases with 
height. 

The isothermal lines corresponding to the flow of figure 6 are shown in figure 8. 
The temperature can easily be calculated from 

H’ - AZ T=- 
AE ’ (55) 
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in which the velocity term has been neglected. It can be seen from the figures 6 
and 8 that an air particle in its up and down motion will have a varying tempera- 
ture. These temperature changes are, of course, due to isentropic compression 
and expansion. A short numerical calculation reveals that the temperature of a 
particle following the lower streamline (originating at  z = 0-1 far upstream) 
changes from 15 to -11°C. This partially explains the formation of equally 

f 
N 

1 

X+ 

FIUURE 8. Isothermal lines in the flow with one lee-wave component. 

0.1 0 1 $0 2.0 

FIGURE 9. Upstream conditions leading to a flow pattern with two 
lee-wave components. 

spaced clouds as has sometimes been observed in the lee of mountain ridges. If 
the humidity of the air is such that the saturation point is reached in the vicinity 
of the crests of the waves, apparently stationary clouds would be formed. How- 
ever, in the case of humid air, the results are only qualitatively true since the 
basic assumption, h constant along a streamline, becomes questionable when the 
medium undergoes a partial change of state. 

Figure 10 shows a pattern with two lee-wave components and was obtained 
using Long’s method. The formation of two jets, one downward and one upward, 
is apparent. The downward jet is more developed for reasons pointed out earlier. 
Although no closed cells appear, they could be created by increasing the height 
of the obstacle. However, the flow inside these cells, as obtained by the previous 
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analysis, is not a priori justifiable because the streamlines in the eddies do not 
originate far upstream and consequently the upstream conditions do not deter- 
mine the values of h and H' on these streamlines. Care has been taken to keep the 
obstacle height below a certain limit in order to avoid extremely converging 
streamlines since these would lead to high velocities and the validity of neglecting 
the dynamic compressibility might become questionable. 

1 

1. 
N 

X +  

FIGURE 10. Flow pattern with two lee-wave components. 

6. Comparison with flow of an incompressible fluid 
In  order to bring out the effect of compressibility an attempt has been made 

to obtain a flow of a compressible fluid and a flow of an incompressible fluid, 
both with equivalent upstream conditions (what is meant here by 'equivalent' 
will be explained later). We know that for the governing differential system to be 
linear, an inverse procedure has to be adopted as indicated in 93. This makes a 
complete match of upstream conditions of two different flows (compressible and 
incompressible) impossible. Since the theory dealing with the flow of an incom- 
pressible stratified fluid will be needed, a brief summary of the equations in 
dimensionless form is given below. For more details we refer to Yih (1960b). 
The associated velocity field (u', w') is related to the original velocity field (u, w) 
by means of u' = uJp and w' = w,lp. These two velocity components (u', w') 
can be derived from the stream function $'(x, z )  by u = a$'/az and w' = - a$'/ax. 
The stream function satisfies the equation 

2 '  dp dH' v $ +z-- =--- a@' a$' , 
in which H ' = p + l  2p( u 2 +  w2) +px. (57) 
Equation (56) can again be made linear by assuming linear functions of $' for 
dp/d$' and dH'ld$'. The most general, but linear, case leads to Bessel functions 
of fractional order. In  some cases, however, the solution can be expressed in 
terms of trigonometric and exponential functions. This is the case when far 
upstream, we choose the density as a linear function of height, and the associated 
velocity constant. Thus, far upstream the conditions are prescribed by 

where a and Uh are constants as indicated on figure 11. Then $; = U i z  and 
p = 1+a( l -22) ;  U ' =  u;, (58) 
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The term dH'/d$' becomes 

So, with dpldx = - 2a by virtue of (58), 

2a 
- - -~ 

dH' 
&F Uf = 

Far upstream, equation (56) becomes 

d2$; 2a 
dz2 UAa 
-+-*; 

ta 

0 u;, 1 .o 
FIGURE 11. Upstream conditions for an incompressible fluid and 

leading to equation (61). 

The general solution is 

We see that, although equation (61) was obtained from a linear density stratifica- 
tion and constant associated velocity far upstream, a whole class of velocity pro- 
files, given by (63), and corresponding density stratifications lead to the same 
differential equation for the stream function. Furthermore, any arbitrary con- 
stant may be added to the stream function and will not change the velocity 
profile. The stream function is then governed by an equation which differs from 
equation (61) by a constant in the right-hand member. This flexibility will be 
used to get a closer match between the incompressible and compressible flow. 
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By adjusting the values of the coefficients A ,  B, C and D in the case where 
compressibility is taken into account, a velocity profile (see figure 12) has been 
obtained which can be matched closely by a function of the form given by (63). 
The density variation is of course considerable and corresponds roughly to normal 
atmospheric conditions. If  we use an incompressible fluid in an attempt to 
describe the flow of a compressible one, there is some question as to what density 
stratification should be taken far upstream. It is indeed the combined action of 
density difference and gravity that determines the restoring forces necessary for 
the creation of waves. The fact that the same density stratification in both com- 
pressible and incompressible fluid will give rise to different restoring forces can 

FIGURE 12. Upstream conditions used for the comparison between the flow of an incom- 
pressible fluid and that of a compressible fluid. A = 11, B = - 1, C = - 19, D = 0. 

easily be inferred from the following reasoning. The density of a particle of air 
increases as the particle goes down (due to compression) and decreases when it 
goes up (due to expansion), whereas the density of a particle of an incompressible 
fluid is independent of its location. 

Besides, the following numerical calculation already predicts the marked 
difference in behaviour between the flow of a compressible and an incompressible 
fluid, the density stratification being taken equal in both cases. 

If we roughly approximate the density stratification, as shown in figure 12, 
by a straight line and the velocity profile by a constant, we find for the values of 
a and Ui  appearing in equation (61), a = 0.485 and Uh = 0.0318. Equation (61) 
then becomes 

This indicates that the resuIting flow pattern would contain 9 lee-wave com- 
ponents while the corresponding flow of the fluid being considered compressible 
contains only a single wave component. 

An appropriate density stratification (for an incompressible fluid) is such that 
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the action of gravity leads to the same restoring forces in both the compressible 
and incompressible flow. The so-called potential density 

satisfies this requirement. 
P*p = Po ex?? ( ( 8 0  - S*)lC,) 

The potential density can be written in the dimensionless form 
1lY 

p*, = exp ((,s,,-,s*)/~~} = P* - (-) Po = A, 
Po Po P* 

which demonstrates the significance of the variable A. 
In  the case of the incompressible fluid, an ideal choice of the upstream con- 

ditions consists of a velocity profile identical to the velocity in the compressible 
flow (figure 12), and a density stratification the same as the potential density 
stratification (figure 13) prevailing in the compressible fluid. 

0.96 1.00 1.04 
FIGURE 13. Approximation to the Stratification of potential density in a compressible 
fluid by the densitystratification inanincompressible fluid. Both stratifications lead to linear 
governing equations. 

These quantities can be approximated rather closely by taking a = 0.01345, 
UA = 0.0318, C, = 0.000318 and C, = - 1.0315 in equation (63). The velocity 
profile is then given by 

This profile is so close to the one shown in figure 12 that the two graphs practic- 
ally coincide. The stream function has been evaluated from equation (62) and 

$i (z )  = 0.000318 sin (5.15762- 1.0315) + 0.03182. is given by 

The density stratification then is 
p(z) = - (2a/U,!,) $i(z) fconst. = - 0+8459$'(z) + 1.0157. 

This stratification is almost linear and is shown, as a basis for comparison, in 
figure 13. Inserting the numerical values of a and 77; in the expressions (59) and 
(60), we obtain 

dpldllr' = - 0.8459 and d H ' l d f  = - 26.601$'. 

U ' ( Z )  = 0.00164 cos (5.15762 - 1.0315) + 0.0318. 
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Equation (56) becomes 
(64) 

The resulting flow pattern has been obtained by Long's method since this method 
allows us to control both the width and the height of the obstacle (figure 14). 

v2?,h-) + 26.601 9' = 0.84592. 

The corresponding flow pattern of the compressible fluid is shown in figure 

t 
N 

t 
N 

x?' 

FIGURE 14. Comparison between the flow of an incompressible and 
a compressible fluid. Incompressible case. 

15. 

X+ 

FIGURE 15. Comparison between the flow of an incompressible and a 
compressible fluid. Compressible case. 

The Sturm-Liouville system resulting from the separation of variables in 
equation (64) admits one negative eigenvalue and, hence, one lee-wave component 
is present in the flow pattern. It is interesting that the negative eigenvalue in 
the case of the compressible fluid is nearly equal to the negative eigenvalue 
corresponding to the incompressible flow. Indeed the latter is 

A, = m2-26.801 = - 16.731, 

while the corresponding numerical value in the case of the compressible fluid 
was found to be - 16.078. This means that the wavelengths in both flow patterns 
are nearly equal as can be seen from figures 14 and 15. However, in spite of the 
fact that the obstacles in both cases (compressible and incompressible) are nearly 
equal, the wave motion is of larger amplitude in the case of the compressible 
fluid. Indeed, the maximum vertical oscillation of a streamline in the com- 
pressible flow is approximately 0.29, whereas the corresponding oscillation in the 
incompressible flow is roughly 0.165. The jet extending upstream is markedly 
more convergent in the compressible flow than in the incompressible one. 
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It is interesting to observe the behaviour of the lower streamline (originating 
at z = 0.1 far upstream) in both cases. Both streamlines have approximately 
the same shape upstream of the trailingedge of the obstacle. Downstream from the 
obstacle, however, the maximumvertical oscillation of this streamline is, in the case 
of the compressible fluid, more than three times as large as the corresponding 
oscillation in the case of the incompressible fluid. Thus, if an incompressible 
fluid is used for the study of atmospheric flows, the flow pattern obtained 
becomes questionable in the lower atmosphere. In  particular i t  may happen 
that the incompressible flow would not display any eddies while these eddies may 
be present in the flow of the compressible fluid. 

7. Conclusions 
Large-amplitude motion in steady, two-dimensional atmospheric flows past 

mountain ridges has been studied. For certain upstream conditions, the governing 
equation was exactly linear in the case of slight stratification in entropy and 
specific energy. These upstream conditions leave wind profile and density strati- 
fication (or the stratification of any other relevant physical quantity) quite 
flexible and i t  is possible to approximate existing atmospheric conditions rather 
closely. 

A general criterion governing the presence of lee waves and expressed in 
terms of wind velocity and entropy stratification would be highly complicated. 
In  a flow where, say, one lee-wave component is present, it is possible for the 
wavelength to remain the same and this with varying stratification in entropy. 
This variation in stratification does not uniquely determine a change in wind 
profile, even if the wavelength of the wave component is to be kept constant. 
However, roughly we can state that an increase in entropy stratification favours 
wave development whereas increasing the wind velocity tends to eliminate 
wave motion. 

All the obtained flow patterns where waves in the lee are present show one or 
more jets extending upstream. Furthermore, they (the flow patterns) exhibit 
a tendency to develop downstream eddies. The presence of these eddies depends 
on the height of the ridge. Increasing this height may also lead to the formation of 
closed cells but the flow inside these cells, as calculated here, cannot be justified 
since the relevant streamlines do not originate far upstream. 

The temperature field corresponding to a particular flow pattern (one lee- 
wave component) shows the existence of cold regions nea.r the crests of the waves 
which partly explains the formation of equally spaced clouds sometimes observed 
in the lee of mountain ridges. 

The comparison between an atmospheric flow, the air being considered com- 
pressible, and a flow of an incompressible fluid reveals clearly that, in order to 
approximate the flow of a compressible fluid by that of an incompressible one, 
the density stratification for the incompressible fluid should be taken equal to 
the stratification of potential density in the atmosphere. Under similar upstream 
conditions the flows of the compressible and incompressible fluids have then the 
same general characteristics. In  particular, the waves present in both flows have 
nearly the same wavelength. However, the spacing of the streamlines is more 
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varied in the compressible flow and the wave is more developed. In  particular, 
the amplitude of the wave in the lower atmosphere is approximately three times 
as large as the corresponding amplitude in the incompressible flow. 
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